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Large Wind Turbine Blades

Dedicated offshore wind power systems:

Stronger and more constant wind.
Increasingly large blades to increase power output per turbine  and reduce
costs per kWh.
No noise-pollution regulations and less aesthetical issues to deal with.

Larger blades require:

Materials with higher specific properties (E/ρ, σ/ρ): 
Carbon fiber composites or hybrid carbon/glass composites.
More efficient structural designs

mblade ∼ (Rblade) 3mblade ∼ (Rblade) 3
2.35
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Alternative Structural Design
Re-introduction of ribs:

Higher structural efficiency (E/ρ).
Reduces local buckling of skin and webs.
Provides attachment points and load paths for smart actuators/control 
surfaces and sensors.
Not entirely new.
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Thermoplastic Composites

Current blade manufacturing technology:
Thermoset composites
2 skins and 1 spar assembled by structural bonding
Vacuum infusion or pre-pregging of individual parts
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Thermoplastic Composites

Alternative blade manufacturing technology:
Thermoplastic composites
2 skins, 1 spar and many ribs assembled by welding
Rubber forming and diaphragm forming of individual parts

Pre-cut laminate 
sheet material

Infra red 
heating panels

Rubber die

Metal die

Rubber press

Final thermoplastic 
composite part

Heating element

Clamp 
connection

Welded 
parts

Voltmeter

Ampmeter
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Thermoplastic Composites

Additional advantages:
Better impact properties.
Do not turn brittle at low temperatures.
Unlimited shelf life of the raw materials.
Fully recyclable (environmental and economic benefits).

Drawbacks:
Poor fatigue performance due to weak fiber-to-matrix bond.
Requires introduction of new technologies and expensive equipment.
High material costs due to need for intermediates.
High processing temperatures (>200°C): high costs, thermal stresses.
Melt pressing technology limits achievable part size and thickness
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Vacuum Infusion of Thermoplastic Composites
Reactive processing of thermoplastic composites:

Manufacturing of larger, thicker and more integrated thermoplastic
composite parts.

Improved chemical bonding 
due to in situ polymerization of the 
matrix around the fibers.

Does not require expensive
intermediate materials but allows
manufacturing of parts directly
from the monomer.

Commonly used technology for
blade manufacturing.
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Vacuum Infusion of Thermoplastic Composites
Reactive processing of thermoplastic composites:

Anionic Polyamide-6:

AP-Nylon®,Brüggemann Chemical, Germany.
Availability of resin, additives and knowledge.
Price/performance ratio (2-3 €/kg).
Viscosity of the monomer (10 mPa⋅s).
Processing temperatures (150-180°C).
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Control of reaction rate

Anionic Polyamide-6
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Selecting the optimum polymerization temperature:

Temperature too low: 
polymerization stops

Temperature too high:
Crystallization difficult

Temperature much too high:
Crystallization stopped

Anionic Polyamide-6

Crystal

MonomerCrystal

Long polymer chain

Branched polymer chain

Bricking-inBricking-in
Bricking-inBricking-in
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Selecting the optimum polymerization temperature:

Temperature too low: 
polymerization stops

Optimum temperature:
Continuous polymerization
& crystallization

Temperature too high:
Crystallization difficult

Temperature much too high:
Crystallization stopped

Anionic Polyamide-6

Short polymer chain
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Polymer tensile properties

Compared to injection molded PA-6

Condition Young’s modulus 
[GPa] 

Maximum strength 
[MPa] 

Strain at failure 
[%] 

23ºC, dry 4.2 (+ 41%) 96 (+ 14%) 9 (-) 
23ºC, 50% RH 2.1 (+ 59%) 61 (+ 4%) 28 (-) 

80ºC, dry 1.6 (+ 65%) 51 (+ 32%) 29 (-) 

Anionic Polyamide-6
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Vacuum Infusion of Polyamide-6 Composites

110°C

110°C

160-180°C

60 minutes

250 mbar
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Anionic Polyamide-6 Composites

Static mechanical
properties

Physical properties
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Anionic Polyamide-6 Composites
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Anionic Polyamide-6 Composites
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APA-6 composite manufactured 
at 180C has better fatigue 
properties than the melt 
processed PA-6 composite:

• Same toughness

• Higher interfacial bond strength 

The epoxy composite outperforms 
both thermoplastic composites. 
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For increasing blade lengths, switching to more efficient structural designs 
is inevitable: the re-introduction of ribs is suggested.

For rib/spar/skin-structures, thermoplastic composites are favoured over 
thermoset composites. Parts can be rapidly melt processed and assembled
through welding. Blades will be fully recyclable.

Vacuum infusion of thermoplastic composites is introduced to overcome
the classical drawbacks of these materials: limited size and thickness of 
parts, poor fatigue resistance, expensive materials.

The cure of a semi-crystalline thermoplastic resin is more complicated than
of a thermoset resin. 

Conclusions
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AP Nylon® has a low viscosity (10 mPa⋅s), good availability, a low price (2-3 
€/kg), and a relatively low processing temperature (150-180°C).

Reactively processed PA-6 outperforms melt processed PA-6 in all 
temperatures and humidities tested. 

Static properties of APA-6 composites are better than of their HPA-6 and 
epoxy counterparts in dry conditions. When moisture conditioned, the 
performance of APA-6 composites drop rapidly, which is caused by the low 
conversions and high void contents.

Reactive processing of thermoplastic composites results in a strong
interfacial bond strength and leads consequently to better fatigue

performance compared to melt processing. 

Conclusions
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Questions?


